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Abstract. The influence of environmental fluctuations (modeled as a multiplicative dichotomous noise) on
predator–prey interaction is studied using a metapopulation model with N prey-subpopulations. Investi-
gating the role that predator interference plays in the dynamics of such trophic systems, the Beddington
functional response is considered. In case the growth rates of prey and predator are widely different, we ob-
tain analytic results by a dynamical mean-field approximation. In some regions of the system parameters,
variations of noise amplitude or correlation time can cause transitions of the mean field from a globally
stable equilibrium to the stable limit cycle as well as in the opposite direction. The conditions for the
occurrence of such a phenomenon are found and illustrated by phase diagrams. Implications of the results
on the colored-noise-induced extinction of a predator population are also discussed.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 87.10.+e Gen-
eral theory and mathematical aspects – 87.23.Cc Population dynamics and ecological pattern formation

1 Introduction

Within the past two decades noise-dependent behavior
of nonlinear systems has received considerable attention.
Some recent discoveries have inspired the idea that noise
can induce order in nonlinear nonequilibrium systems.
Stochastic resonance [1], noise-induced phase transitions
in spatially extended systems [2], stochastic transport
in ratchets [3], noise-induced spatial patterns [2], co-
herence resonance [4], hypersensitive response [5], noise-
induced multistability and discontinuous transitions [6,7]
are a few new phenomena in this field. Active analyti-
cal and numerical studies of various relevant models have
been stimulated by their possible applications in chemi-
cal physics, molecular biology, nanotechnology, and sep-
aration techniques of nanoobjects [3,8,9]. Recently, the
essential role of environmental fluctuations has been rec-
ognized in theoretical ecology. Noise-induced effects on
population dynamics have been subject to intense the-
oretical investigations [10]. Those include, for example,
noise-induced oscillations in two competing species [11],
stochastic resonance in population dynamics [12], extinc-
tion statistics in N random interacting species [13], and
transient dynamics of ecosystems in the presence of col-
ored noise [14].

The problem how environmental fluctuations and
species interaction may determine oscillations in popula-
tion sizes, displayed by many organisms in nature as well
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as in laboratory cultures [15–17], is one of the central is-
sues in ecology. The most widely accepted deterministic
(without fluctuations) model for predator–prey dynamics
can be written as follows [16,18]:

dx

dt
= xf(x) − αg(x, y)y,

dy

dt
= y[βg(x, y) − d], (1)

where x and y are densities of prey abundance and preda-
tor abundance, respectively, f(x) is the per capita rate
of increase of the prey in absence of predation, and d
is food-independent predator mortality, assumed to be
constant. The function αg describes the amount of prey
consumed per predator per unit time, while βg describes
predator production per capita. The quotient of the two
constants β and α is the conversion efficiency β/α. Dur-
ing the past decade a lot of studies have been devoted
to the consequences of assuming either a prey-dependent,
g = g(x), or ratio-dependent, g = g(x/y), predator
functional response (a trophic function) in predator–prey
models [18–20]. Ratio-dependent models can display orig-
inal dynamic properties that have never been observed
in the most popular prey-dependent models. For exam-
ple, the origin (x = 0, y = 0) can be a node simul-
taneously attractive and repulsive, thus shedding a new
light on ecological extinction. A coexistence of several dy-
namic regimes with the same set of parameters can also
be observed [21]. These are realistic features since those
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behaviors have been observed experimentally [22]. How-
ever, it has been recognized that pure prey dependence
or ratio dependence are both likely to be rare in na-
ture [23]. Namely, the specific prey-dependent form g(x)
is the extreme case of “non-sharing” predation process
in case individuals are uniformly distributed in space and
their age structure and sex ratio do not significantly affect
the growth rate of either population; the ratio-dependent
form g(x/y) is the extreme case of “perfect sharing” and
corresponds to the case of heterogeneous systems, where
the large-scale outcome of predation is a sharing process
(the predators have to search or compete for food) [18].
In the present paper we use the word “interference” to
designate any mechanism by which predator density de-
presses individual predator performance. In this context,
ratio-dependence can be considered as an extreme case
of strong mutual interference between predators [24]. Us-
ing a mechanistic approach to describe predator behavior,
Beddington [25] developed an explicit model to describe
the effect of predator interference on the trophic function:

g(x, y) =
x

x + by + c
, (2)

where b is a predator interference parameter, and c is a
saturation constant. It is remarkable that, independently,
DeAngelis et al. [26] have developed the same model fol-
lowed by a phenomenological approach on the scale of pop-
ulations. Actually, equation (2) can be regarded as a quite
general trophic function [20,24]. First, equation (2) has
been derived from general mechanistic assumptions (see
also [25,27]). Second, most popular functional responses,
such as the Holling type II prey-dependent functional
response (b = 0 in Eq. (2)) [20,24] and the Michaelis-
Menten-Holling type ratio-dependent functional response
(c = 0 in Eq. (2)) [18,20], are particular cases of equa-
tion (2).

Although deterministic predator–prey models with the
Beddington functional response (BFR) are useful in mod-
eling many real ecological communities and have been
subject to intense theoretical investigations (particularly
the ratio-dependent limit) [20,21,24,28], there is hardly
anything available either on qualitative analysis of mul-
tispecies interaction or on the effect of environmental
fluctuations in models based on the BFR or on a ratio-
dependent approach [29,30].

Recently we have considered a broad class of (N + 1)-
species ratio-dependent predator–prey models that consist
of one predator population and N prey populations with
fluctuating carrying capacities [29]. Notably, in the frame-
work of the mean field theory it is shown that the dynam-
ical system for the mean prey abundance and predator
abundance exhibits Hopf bifurcations with respect to the
noise correlation time.

However, this work is based on local stability analysis
with the assumption that noise dispersion (or amplitude)
is very small. As a consequence, for the existence of the
phenomenon of noise-induced Hopf bifurcations the con-
trol parameter (prey capturing rate α) must be located
very near the bifurcation point αcr of the correspond-
ing deterministic model. Moreover, in the case considered

in [29] the trivial equilibrium (x = 0, y = 0) has its own
basin of attraction, even if there exists a nontrivial stable
or unstable (with a stable limit cycle) equilibrium. Hence,
the appearance of noise-induced Hopf bifurcation is very
sensitive to small variations of the system parameters and
initial conditions, and so, the results of [29] are mainly of a
theoretical interest, while biological applications in nature
seem impossible. Thus, [29] leaves open the fundamental
question in the ecological context, both from the theoret-
ical and practical viewpoints, whether environmental col-
ored fluctuations with a finite amplitude can cause glob-
ally asymptotically stable limit cycles in ratio-dependent
(or in the case of the BFR) predator–prey systems, i.e.
whether transitions from equilibrium states to oscillatory
regimes (and the opposite way) sometimes occurring in
ecosystems [15–17] could be regarded as induced by en-
vironmental nonequilibrium fluctuations. The question is
addressed in the present paper and the answer is affirma-
tive, which is a crucial result, allowing in practice to link
the transitions between an oscillatory regime and an equi-
librium state of population sizes observed in nature with
changes of environmental fluctuations.

So in the present paper we considerably generalize the
model used in [29], enlarging the dimension of the sys-
tem parameter space by two. Namely, in our calculations
we allow the noise amplitude to take any biologically rea-
sonable values (including moderate ones) and replace the
ratio-dependent functional response by the Beddington
trophic function (the ratio-dependent model is a partic-
ular limit case). Making the model more general and in-
tricate enables us to understand the interrelationship of
some effects which formerly seemed to stand apart, and
thereby reveal some new features. Thus, we consider a
class of (N + 1)-species predator–prey models with the
BFR that consist of one predator population and N prey
populations. The effect of a fluctuating environment on
the prey populations is modeled as colored fluctuations of
the carrying capacities. For the sake of mathematical sim-
plicity, we confine ourselves to the case where the noise is
a dichotomous Markovian noise, also known as the ran-
dom telegraph signal [31]. Since one of the characteristic
quantities of an ecosystem, perhaps the most fundamen-
tal one, is its average species density [32] (

∑N
i=1 Xi/N ,

where Xi is the population density of the ith species),
we consider the average species density of prey as one of
the two state parameters of an ecosystem (or a metapop-
ulation), the other state parameter being the density of
predator abundance. We study the model using the mean
field approach, focusing on colored-noise-induced transi-
tions. Differing from [29] we consider here that region of
the system parameters space where the corresponding de-
terministic model is characterized by a nontrivial globally
asymptotically stable equilibrium.

The main contribution of this paper is as follows.
In predator–prey systems in which the growth rate of

the predator is much smaller than the growth rates of
preys, we establish colored-noise-induced transitions from
a globally stable equilibrium to the stable limit cycle (with
some oscillations of population abundances) as well as
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in the opposite direction. Furthermore, the transition is
found to be reentrant, e.g., if the noise amplitude is greater
than a certain threshold value, then the limit cycle ap-
pears above a critical value of the noise correlation time,
but disappears again through reentrant transition to the
equilibrium state at a higher value of the noise correlation
time. In the case of logistic self-regulation of prey we give
the necessary and sufficient conditions for the appearance
of such effects. We emphasize that contrary to the par-
ticular case of a ratio-dependent model described in [29],
here the limit cycles rather occur at moderate or greater
noise amplitudes than at very small ones. We also analyze
the role of the predator interference parameter and satura-
tion constant of the BFR in such transitions. Moreover, in
the cases of moderate and small predator interference we
establish colored-noise-induced transitions from a steady
state to the state where the predator population extincts,
and also derive the conditions for the existence of such,
very important in an ecological viewpoint, phenomenon
(in the case of a ratio-dependent model such transitions
are absent).

The structure of the paper is as follows. In Section 2
we present a brief review of the properties of a determin-
istic model (1) with the BFR. The basic model investi-
gated in this work is presented. A mean-field description of
the model is given and the corresponding self-consistency
equations are found. Section 3 analyzes the behavior of
the self-consistently determined mean field. The phenom-
ena of colored-noise-induced relaxation oscillations of prey
and predator densities and colored-noise-induced extinc-
tion of the predator population are established, and the
conditions for such effects are illustrated with the help of
phase diagrams in the system parameters space. Section 4
contains some brief concluding remarks.

2 Model

2.1 A deterministic predator–prey system
with the Beddington functional response

Recently, a complete mathematical description of the de-
terministic predator-prey systems (1) with Beddington
functional response (2) and with the logistic self-
regulation

f(x) = δ

(

1 − x

K

)

, (3)

where K is the carrying capacity of the prey and δ is a
constant intrinsic growth rate, have been the topic of a
number of investigations [24,28]. The main objective of
those papers is to consider the stability behavior of so-
lutions around different equilibrium points (xe, ye). The
biological role played by predator interference in the sta-
bilization of such systems is investigated in [24]. If the
initial conditions lie within the positive quadrant (x(0) =
x0 > 0, y(0) = y0 > 0), then it is known [28] that the
solutions of system (1) with equations (2) and (3) are
positive and bounded for all t ≥ 0. The predator–prey
system described above has two equilibria, E1 = (0, 0)
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Fig. 1. Existence and stability of equilibriums and limit cycles
in relation to ratios α/b = α∗ and K/c = K∗ (the deterministic
model (1)–(3) with parameter values s = 0.5; δ = 1.0; d = 0.3).
The stability region of a nontrivial equilibrium E3 is shown
in white, the existence of a stable trivial equilibrium E2 =
(0, K) in light grey (E3 is absent), and the existence of stable
limit cycles in dark grey. Solid line (1): the Hopf bifurcation
curve (see Eq. (8)). Dashed line (2) is the asymptotic limit
K/c = (1+ s)/(1− s) = 3 of curve (1). Dashed-dotted line (3):
K/c = s/(1− s) = 1. Dotted line (4) depicts the lower limit on
α/b for the existence of Hopf bifurcations (see Eq. (9)).

and E2 = (K, 0), for all biologically possible values of the
parameters (α > 0, β > 0, d > 0, δ > 0, K > 0, b > 0, and
c > 0). The third equilibrium point E3 = (xs, ys), i.e., the
nontrivial equilibrium is given by

xs =
K

2

[

1 − α(1 − s)
δb

+

√
4αsc

δbK
+

(

1 − α(1 − s)
δb

)2
]

,

ys =
1
sb

[xs(1 − s) − cs], s :=
d

β
. (4)

This equilibrium is biologically meaningful (xs > 0, ys >
0) only if

K

c
>

s

1 − s
, 0 < s < 1, (5)

i.e., the predators and prey coexist in equilibrium pro-
vided the maximal predator growth rate β is larger than
its death rate d and the saturation parameter c is suffi-
ciently small. The stability analysis of Ei shows that the
equilibrium E1(0, 0) is always unstable (a saddle point)
and the equilibrium E2 = (K, 0) is a saddle point (unsta-
ble) if the conditions (5) are fulfilled, while in the opposite
case E2 is globally asymptotically stable. In the latter case
predators go to extinction. The behavior of the nontrivial
equilibrium E3 = (xs, ys) is more complicated [28].

In the rest of the paper, we shall always assume that
the maximal predator growth rate β is restricted to the
inequalities

d < β < δ + d. (6)

In this case the existence and stability of a positive non-
trivial equilibrium in relation to the carrying capacity K
and prey capturing rate α are illustrated in Figure 1.
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There is a lower limit on K/c for the existence of a non-
trivial equilibrium E3:

(
K

c

)

1

=
s

1 − s
. (7)

For s/(1 − s) < K/c < (1 + s)/(1 − s), we always have
the global asymptotic stability of E3. For a greater K/c,
(K/c) > (1+ s)/(1− s), there is an upper limit on α/b for
the stability of E3. One can find the critical curve (K/c)cr:

(
K

c

)

cr

=

[
α
b (1 + s) − d

]2

(1 − s2)
(

α
b − β

)[
α
b − (

α
b

)
cr

] , (8)

(
α

b

)

cr

=
δ + d(1 − s)

1 − s2
, (9)

above which the equilibrium E3 is unstable and there ex-
ists exactly one limit cycle which is globally asymptoti-
cally stable [28], i.e., the predator and prey populations os-
cillate periodically. Under assumption (6), it is clear from
equations (8) and (9) that there will be a limit cycle at
some values of s and d if and only if

α

b
> δ,

K

c
>

α

α − bδ
. (10)

Finally, we emphasize that the dynamical behavior of the
deterministic predator–prey model (1) with the BFR and
logistic self-regulation depends only on the ratios K/c and
α/b, but not on all four parameters (α, K, c, b) indepen-
dently.

2.2 Stochastic model

As was mentioned in Introduction, the present model is
based on a generalization of the predator-prey dynam-
ics (1) with the BFR (see Eq. (2)) and with logistic self-
regulation (3) to the case of one predator population and
N prey populations (see also [29]):

dXi

dt̃
= Xifi(Xi) − α̃g(x̄, y)

y

x̄
Xi,

dy

dt̃
= β̃yg(x̄, y) − d̃y, (11)

where Xi(t̃) (i = 1, . . . , N) is the density of the ith prey
population at the time t̃, y(t̃) is the density of the predator
population, and x̄(t̃) = (1/N)

∑N
i=1 Xi(t̃) is the average

of the prey population densities. The positive constants
α̃, β̃, and d̃ stand for the prey capturing rate, maximal
predator growth rate, and predator death rate, respec-
tively. Here we have assumed that for consumers (preda-
tor) all prey populations are equivalent, so that the func-
tion α̃g(x̄, y)Xi/x̄ describes the amount of the ith prey
consumed per predator per unit time. The following anal-
ysis applies to the Beddington functional response g(x̄, y)
where x is replaced by x̄ (see Eq. (2)). A typical mecha-
nism for self-regulation in ecosystems includes, for exam-
ple, territorial breeding requirements and the crowding

effect caused by competition for resources [32]. These are
taken into account by applying the logistic self-regulation
model (3)

fi(Xi) = δ

(

1 − Xi

Ki

)

, (12)

where Ki is the carrying capacity of the ith species.
Random interaction with the environment (climate,

diseases, etc.) is taken into account by introducing a col-
ored noise in fi(Xi). From now on we shall use fluctuations
of the carrying capacity

Ki = K[1 + aZi(t̃)], (13)

where colored noise Zi(t̃) is assumed to be a dichotomous
Markovian stochastic process [31]. A dichotomous process
is a random stationary Markovian process consisting of
jumps between two values z = −1, 1. The jumps follow in
time according to a Poisson process, while the values occur
with the stationary probability 1/2. The mean values of
Zi(t̃) and the correlation function are

〈Zi(t̃)〉 = 0, 〈Zi(t̃)Zj(t̃′)〉 = δij exp(−ν̃|t̃ − t̃′|), (14)

where δij is the Kronecker symbol and the switching rate
ν̃ is the reciprocal of the noise correlation time ν̃ = 1/τ̃c.
Obviously, model (11) with equations (12) and (13) is bi-
ologically meaningful only if

a < 1. (15)

It is practicable, by applying the properties of the dichoto-
mous process, to convert the term K−1

i in equation (12)
to the form

K−1
i = γ[1 − aZi(t̃)], γ =

1
K(1 − a2)

. (16)

By substituting identity (16) into equations (12) and (11)
and applying a scaling of the form

t = δt̃, ν =
ν̃

δ
, α =

α̃

δ
, β =

β̃

δ
, d =

d̃

δ
(17)

we get a dimensionless formulation of the dynamics

dXi(t)
dt

= Xi(t)
{

1 − γ[1 − aZi(t)]Xi(t) − αg(x̄, y)
y

x̄

}

,

dy(t)
dt

= y(t)[βg(x̄, y) − d], i = 1, . . . , N, (18)

where Zi(t) is a dichotomous noise with the ampli-
tude 1 and a switching rate ν. We emphasize that equa-
tions (18) are mathematically equivalent to the initial sys-
tem (11), (12) and (13) and have been derived without
any approximation. Note that if noise is absent and the
distribution of the initial prey population abundances is
uniform, xi(0) = x0, then the model (18) reduces to the
deterministic predator–prey model (1) with equations (2)
and (3) for x̄ and y, i.e.

dx̄

dt
= x̄

[

1 − γx̄ − αg(x̄, y)
y

x̄

]

,

dy

dt
= yβ[g(x̄, y) − s], s =

d

β
. (19)
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Thus, in this case, the results described in [24,28] are im-
mediately applicable (see also Sect. 2.1).

2.3 Mean field approximation

To proceed with the analytical examination of Model (18),
we follow the mean field approximation scheme. We as-
sume that N → ∞. This means that we are interested
in the case of a very great number of prey populations
(or subpopulations in a prey metapopulation). The mean
field approximation can be reached by replacing the size
average x̄ = (1/N)

∑N
i=1 Xi(t) by the statistical average

〈X(t)〉 in equations (18). Hence, each stochastic differen-
tial equation for Xi(t) in equations (18) can be reduced
to a stochastic differential equation with a dichotomous
noise of the form

dX(t)
dt

= X(t){ρ(t) − γX(t)[1 − aZ(t)]}, (20)

where

ρ(t) = 1 − αg
(〈X(t)〉, y(t)

) y(t)
〈X(t)〉 . (21)

According to [31], the corresponding composite master
equation is

∂

∂t
Pn(x, t) = − ∂

∂x
{x[ρ − γx(1 − an)]Pn(x, t)}

− ν

2

2∑

m=1

[(2δnm − 1)Pm(x, t)], (22)

with Pn(x, t) denoting the probability density for the com-
bined process (x, an, t); n, m = 1, 2; −a1 = a2 = a.

If the predator population density y is constant (or a
very slow variable) and ρ > 0, then significant inequalities
follow from equation (20) to characterize the stationary
state (or the quasistationary state) of the system. For a
stationary case, x1 = ρ/[γ(1−a)] and x2 = ρ/[γ(1+a)] are
stable fixed points of the deterministic equations (20) with
Z(t) = 1 and Z(t) = −1, respectively, and all trajectories
X(t) satisfy the following inequalities:

ρ

γ(1 − a)
> X(t) >

ρ

γ(1 + a)
. (23)

Now, the behavior of the stationary system (20) can be
analytically studied by means of a standard mean field
theory procedure [2]. For a stationary state we can solve
equation (22), taking as the boundary condition that there
is no probability current at the boundary (23). This way
we get the stationary probability distribution in the x
space, P (x, ρ) =

∑
n P s

n(x), where P s
n(x) is the station-

ary probability density for the state (x, an). After quite
simple calculations one can find (cf. [33])

P (x, ρ) =
ρ

γaB
(
1/2, ν/(2ρ)

)
x2

×
∣
∣
∣
∣1 − ρ2

γ2a2

(
γ

ρ
− 1

x

)2∣∣
∣
∣

[ν/(2ρ)]−1

, (24)

where ρ = 1 − αg(〈X〉, y)y/〈X〉, B(λ, κ) =
Γ (λ)Γ (κ)/Γ (λ + κ) is the beta function, and Γ is
the gamma function. The probability density P (x, ρ)
is normalized to restrict x within the interval (x1, x2).
The self-consistency equation for the Weiss mean field
approach, whose solution yields the dependence of 〈X〉
on the system parameters, is

〈X〉 =
∫ x1

x2

xP (x, ρ)dx. (25)

With the help of the stationary probability distribu-
tion (24), one can easily calculate the moments of prey
population densities

〈Xk〉 =
(

ρ

γ

)k

2F1

(
k

2
,
k

2
+

1
2
;

ν

2ρ
+

1
2
; a2

)

, (26)

where 2F1 is the hypergeometric function and k = 1, 2, . . .

3 Relaxation oscillations

3.1 Isoclines

In this section, we discuss a special case where β̃ � δ
(β � 1; relaxation oscillation limit), i.e., the case where
the maximal predator growth rate is much less than the
maximal prey growth rate. Interaction of fast and slow
processes is an integral part of the sudden large shifts
that sometimes occur in ecosystems [34]. There is a range
of examples from natural as well as exploited aquatic and
terrestrial systems, where catastrophic bifurcations in the
dynamics of the fast components are at the heart of such
dramatic shifts [34,35]. Famous examples are the spruce-
budworm interaction [36] (the dynamics of the budworm
is much faster than that of the spruce trees on which
they forage) and plankton pelagic communities (preys,
fast variable) and fish populations (predators, slow vari-
able) [34].

It is shown by the last equation of equations (18) that
in the limit β � 1, y varies very slowly. Since the dynam-
ics of X (see Eq. (20)) is much faster than that of y, a
quasi-stationary probability distribution is formed before
y varies. In other words, the variable y in equation (20) is
just a parameter for the dynamics of X . In this case, we
can investigate the mean field dynamics of the system (18)
using the following equations (see also Eq. (26)):

y =
c(1 − ρ)

b(α∗ + ρ − 1)
[F (ρ) + 1], α∗ ≡ α

b
, (27)

dy

dt
= βy

[
u(ρ)

1 + u(ρ)
− s

]

,

ρ ∈
{

(1 − α∗, 1) if α∗ ≤ 1,
(0, 1) if α∗ ≥ 1,

(28)
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Fig. 2. The prey isoclines y(u) vs the parameter u. Curves (1)–
(4) correspond to the following parameters: (1) a = 0, α∗ =
α/b = 1.002, K∗ = K/c = 80; (2) a = 0, α∗ = 1.024, K∗ = 75;
(3) a2 = 0.82, ν = 0.08, α∗ = 1.01, K∗ = 230; (4) a2 = 0.9, ν =
0.04, α∗ = 0.9, K∗ = 210. The isoclines have been computed
by means of equations (27) and (29) at c/b = 1.0.

where for convenience we have used the notations

u(ρ) =
〈X〉

by + c
=

(α∗ + ρ − 1)F (ρ)
(1 − ρ)F (ρ) + α∗ , (29)

F (ρ) = K∗(1 − a2)ρ 2F1

(
1
2
, 1;

1
2

+
ν

2ρ
; a2

)

, K∗ =
K

c
.

(30)

Note that u(ρ) is a monotonically increasing function on ρ
and the upper value of ρ, ρ = 1, corresponds to the extinc-
tion of the predator population. Equations (27) and (29)
correspond to the prey isocline of the system. It is obvious
that the predator isocline is given by

u =
s

1 − s
= const. (31)

The slow–fast approach suggests an intuitive idea why
predator–prey cycles sometimes occur. This can happen
if the fast system (20) can have fold bifurcations of the
mean field in the range of interest of the parameter y, i.e.,
if the self-consistency equations (27) and (29) can have
more than one solution u(y) in some interval of the val-
ues of y. The typical forms of the prey isocline y(u) are
represented in Figure 2. At the condition (6), one has to
discern four cases.

For α∗ < 1 and in the case of α∗ > 1, K∗ < α∗/(α∗−1)
the deterministic counterpart (a = 0) of the curve y(u)
is described with a monotonically decreasing function as
the variable u increases (see curve (1) in Fig. 2). Obvi-
ously the system is monostable and no cycle can occur. In
the deterministic case, if the conditions (10), i.e. α∗ > 1,
K∗ > α∗/(α∗−1), are valid, there occurs a nonmonotonic
dependence with one extremum of the prey isocline y(u)
on u (curve (2) in Fig. 2). In this case the cycles are pos-
sible and occur when the predator isocline u = s/(1 − s)
intersects the unstable piece of the prey isocline, i.e. when

0 0.2 0.4 0.6 0.8 1.0
u

28

29
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32
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34

y

Fig. 3. Noise-induced relaxation oscillations. The thick solid
cycle depicts the predator population density y versus the
ratio u = 〈X〉/(by + c), computed by means of equa-
tions (27), (29), (30), and (31). Solid lines: the stable pieces
of the prey isocline determined by equations (27) and (29).
Dashed line: the unstable piece of the prey isocline. Dotted
line: the predator isocline given by equation (31). Parameter
values: c/b = 1.0, α∗ = 0.99, K∗ = 100, a2 = 0.9, ν = 0.2, and
s = 0.16. The oscillation cycle follows a stable piece of the prey
isocline and jumps to another stable branch of the isocline.

it intersects the increasing branch of the prey isocline.
The presence of colored fluctuations of the carrying ca-
pacities of preys has a qualitative influence on the forms
of the isocline y(u), so that in some regions of the noise
parameters a and ν the prey isocline y(u) can have two
extrema. The corresponding isoclines are represented in
Figure 2 with curves (3) and (4). Contrary to curve (3),
on curve (4) the value of y(0) is greater than the value of
y at the local maximum. Although cycles are possible in
both cases, pure relaxation oscillations can appear only for
prey isoclines of the form (4). In this case the relaxation
cycles occur when the predator isocline u = s/(1−s) inter-
sects the unstable (increasing) branch of y(u) (see Fig. 3).
Thus, in the last mentioned case, the system will converge
to a limit cycle, represented in Figure 3, starting from
any initial state y(0) > 0 and 〈X(0)〉 > 0. A long time
series of abundances of predators and prey (Fig. 4) illus-
trates the fact that cycles are characterized by periods of
relatively little change, separated by dramatic transitions
in the ecosystem. That is why in ecological context such
cycles are also called slow–fast cycles [34]. It is seen that
the amplitudes of population size oscillations are relatively
large. In addition the phase lag (the delay between prey
and predator maxima) as a fraction of the cycle period
T = 161.61 is 0.31, which is greater than in the case of
“classical” predator–prey cycles (the quarter-cycle delay).
As mentioned above the oscillatory regime of predator–
prey communities can also appear if the prey isoclines be-
have as curves (2) and (3) in Figure 2. But in these cases
the slow-fast approach considered is invalid at low values
of prey densities X where the dynamics of X (see Eq. (20))
is slower than that of the predator density y. Moreover,
in last cases, under the condition β̃ � δ the dynamics can
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Fig. 4. Time evolution of the mean prey density 〈X〉 (panel
(a)) and predator density y (panel (b)) obtained by numeri-
cally solving equations (27)–(30) for the limit cycle displayed
in Figure 3 at β = 0.01. Note that the predator–prey cycles
exhibit a delay of ∆t ≈ 49.73 between the prey and predator
maxima. Time is dimensionless as scaled by equation (17).

come very close to the axes (x = 0, y = 0), and extinction
may occur in nature due to demographic or environmental
stochasticity. Therefore, in ecological context the problem
of the existence of noise-induced slow-fast cycles is reduced
to finding such regions of noise parameters where prey iso-
clines of the form (4) (see Fig. 2) are possible.

3.2 Noise-induced transitions

First, we examine the case in which the predator interfer-
ence parameter b is larger than the prey capturing rate α,
i.e. α∗ < 1. This case is important to study, because it per-
mits to identify the cases in which the relaxation oscilla-
tions are solely due to colored noise. Here we would like to
remind the reader of the fact that the corresponding deter-
ministic model (19) with conditions K/c > s/(1−s) has a
globally asymptotically stable nontrivial equilibrium; the
corresponding prey isocline y(u) is a monotonically de-
creasing function of u. At α∗ < 1 two cases can be dis-
cerned. (i) If the carrying capacity K∗ is less than a critical
value K∗

c , the prey isocline y(u) is always described with
a monotonically decreasing function of u and the system
is monostable, i.e., no limit cycle can occur. The critical
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Fig. 5. A plot of the phase diagram in the ν − a2 plane at
α∗ = 0.99 and K∗ = 100. The shaded domain corresponds
to the region where noise-induced relaxation oscillations are
possible. The borders of the shaded region are computed from
equations (34), (27), (29), and (30). Note that at a2 = 1 both
borders approach zero.

carrying capacity K∗
c is given by the equations

K∗
c =

2z∗(1 + z∗)ez∗

2(1 − α∗) + z∗(2 − α∗)
, (32)

where z∗ is the positive root of the algebraic equation

z3 +
4(α∗ − 1)

α∗ z2 − 2
[

1 − 4(α∗ − 1)
α∗

]

z +
4(α∗ − 1)

α∗ = 0.

(33)
Note, that the formula (32) for K∗

c can be easily find from
equations (27) and (29) at the upper limit of the noise
amplitude, a → 1, where the influence of noise is the most
pronounced.

(ii) In the case of sufficiently large values of the carry-
ing capacity, K∗ > K∗

c , noise-induced relaxation oscilla-
tions are possible.

Figure 5 shows a phase diagram in the ν − a2 plane at
α∗ = 0.99 and K∗ = 100 (K∗

c = 21.058). The shaded re-
gion in the figure corresponds to those regions of the noise
parameters, ν and a2, where the oscillations of population
sizes are possible. As the noise amplitude a decreases the
region of oscillations narrows down and disappears at the
critical value of the noise amplitude a2

c = 0.7578. Hence,
there is an upper limit ac(α∗, K∗) for the noise ampli-
tude at lower values of which the system is characterized
by just one stable equilibrium (limit cycles cannot occur).
The boundary of the region of the oscillatory phase and
the critical noise amplitude ac are given by the system of
transcendental equations:

d

du
y(u) = 0,

d2

du2
y(u) = 0, (34)

where y(u) is given by equations (27) and (29). At a fixed
K∗ the critical parameter ac increases monotonically to 1
if the prey capturing rate α∗ ∈ (0, 1) decreases. For a → 1,
from equations (34) we can easily obtain an asymptotical
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expression for the boundaries of the region of oscillations
ν1(a2) and ν2(a2):

νi(a2) ≈ zi[2(1 − α∗) + zi(2 − α∗)]
(1 + zi)| ln(1 − a2)| , a → 1, (35)

where i = 1, 2; z1 and z2 are the positive solutions of the
transcendental equation
[

1 − α∗ +
α∗z

2(1 + z)

]2

= 1 − α∗ +
α∗ez

K∗(1 + z)
, K∗ > K∗

c .

(36)
It is remarkable that the region of the oscillations narrows
down also in the vicinity of the maximal noise amplitude
a = 1, and disappears at the point ν = 0, a = 1. Thus, the
phenomenon of noise-induced oscillations is absent in two
cases: if the noise amplitude is either too low or very large.
Furthermore, from Figure 5 it is seen that an increase of
the noise correlation time, τc = 1/ν, can cause a transi-
tion from a stable equilibrium state to a state where both
the predator-population and average prey-population den-
sities oscillate. Notably, a further increase of τc causes a
reentrant transition, i.e., the limit cycle disappears and
the system approaches a stable equilibrium state. There-
fore, in the fast-noise limit, τc → 0, and in the adiabatic
limit, τc → ∞, oscillations are impossible. It is obvious
that such transitions can also occur if the noise ampli-
tude a is chosen as the control parameter. However, in
this case, as a rule, a reentrant transition (for increasing
a) from the oscillatory regime to an equilibrium state ap-
pears at a very large value of the noise amplitude a ≈ 1,
at which extinction due to demographic stochasticity is
possible. Since the dynamics of the corresponding deter-
ministic model (19) with the condition α∗ < 1 is charac-
terized by a globally stable equilibrium, the asymptotic
behavior described above has a distinct physical meaning.
In the case of the adiabatic limit, τc → ∞, transitions be-
tween both states of the nonequilibrium noise Z(t) are so
rare that the system has enough time to allow determinis-
tic dynamics to be formed between the transitions. At the
fast-noise limit, τc → 0, i.e. at very high frequencies of col-
ored fluctuations, the dynamics of the system is under the
influence of the average K−1

eff := 〈K−1
i 〉 = [K(1 − a2)]−1.

Hence, the influence of fast fluctuations on an ecosystem
can be biologically interpreted as a reduction of the car-
rying capacity K of single species in equation (12). Thus,
our model with noise is, in the case of τc → 0, equivalent
to a deterministic model with the carrying capacity Keff .
Let us note that such behavior of the system in the case
of α∗ < 1 is more pronounced at a ratio-dependent limit,
i.e., when predator interference is strong and is mainly the
result of an interplay of predator interference and environ-
mental fluctuations.

In Figure 6, noise-induced transitions different from
those considered in Figure 5 can be observed on the phase
diagram in the u − ν plane. Namely, in Figure 6 the lines
u0(ν), at different values of noise amplitudes, correspond
to the equation

u0(ν) = K∗(1 − a2)2F1

(
1
2
, 1;

1
2

+
ν

2
; a2

)

, (37)
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Fig. 6. Dependence of the critical parameter u0 on the noise
switching rate ν, obtained from equation (37) at different val-
ues of noise amplitudes a. Curves (1)–(4) correspond to the
following values: K∗ = 100; (1) a2 = 0.3; (2) a2 = 0.6; (3)
a2 = 0.8; (4) a2 = 0.95. The dashed line corresponds to the
predator isocline of equation (31) with s = 0.98. In the case
of u0(ν) < s/(1 − s) = 49 the predator population drives to
extinction.

which determines noise-induced extinction of the preda-
tor population. The dashed horizontal line represents the
predator isocline u = s/(1− s) (see Eq. (31)). In the case
of s/(1 − s) < u0(ν) both the prey and predator popula-
tions coexist either at a globally stable equilibrium or at
a stable limit cycle. But if u0(ν) < s/(1 − s), the preda-
tors are unable to reproduce fast enough to compensate
their death rate and consequently the predator population
drives to extinction. So an increase of the switching rate ν
of environmental fluctuations can cause extinction of the
predator population. From Figure 6 it is seen that preda-
tor extinction occurs at lower values of the switching rate
when the noise amplitude a increases. Note that, since in
a ratio-dependent model the saturation constant c = 0,
i.e. K∗ = ∞, and thus such transitions are absent.

Next we will briefly consider the case of α∗ > 1. A
major property of the proposed model at this regime is
that an interplay of the colored-noise-induced quasibista-
bility of the mean prey-population density and the Hopf
bifurcating dynamics of the system (analogous to that in
the deterministic case) can generate a rich variety of phase
diagrams. Note first that, somewhat surprisingly, there ex-
ists a critical value of the prey capturing rate α∗

c ≈ 1.1078,
above and below which the behavior of ν − a2 phase dia-
grams is qualitatively different.

In the case of 1 < α∗ < α∗
c , there are two positive so-

lutions z∗1 and z∗2 of Eq. (33). According to equation (32)
these solutions determine two critical carrying capacities:
K∗

c1 < α∗/(α∗ − 1) < K∗
c2. Hence, one can discern four

cases. (i) If K∗ < K∗
c1, then the system is monostable, i.e.

no limit cycle can occur. (ii) For K∗
c1 < K∗ < α∗/(α∗−1)

the phase diagram on the ν − a2 plane is qualitatively
similar to Figure 5. Thus, noise-induced transitions be-
tween the equilibrium state and the oscillating regime are
possible. (iii) In the case of α∗/(α∗ − 1) < K∗ < K∗

c2 a
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Fig. 7. (ν, a2) phase diagram for the existence of limit cycles
in the case of α∗/(α∗ − 1) < K∗ < K∗

c2. The parameter values
α∗ = 1.05 and K∗ = 21.115 (K∗

c2 = 21.125) are used. The
shaded regions correspond to the two domains ((1) and (2))
where oscillations are possible. The borders of the domains
are computed from equations (34), (27), (29), and (30). The
dashed line depicts the lower border above which the relaxation
oscillations are possible. For more details see the text.

typical phase diagram can be seen in Figure 7. The in-
teresting peculiarity of the diagram is that there are two
disconnected regions (the shaded areas in Fig. 7) where the
limit cycles can appear. The upper domain (1) is qualita-
tively similar to the one represented in Figure 5 and corre-
sponds to “purely” noise-induced relaxation oscillations.
In the larger shaded region (2) the oscillations are related
to noise-influenced “deterministic” limit cycles. Here we
would like to remind the reader of the fact that the cor-
responding deterministic (the noise is absent) model (19)
with conditions α∗ > 1 and K∗ > α∗/(α∗ − 1) can have a
globally asymptotically stable limit cycle. It is also note-
worthy that there is a critical value of the noise amplitude
a1 (not shown in Fig. 7, a2

1 = 0.00545), namely

a2
1 = 1 − α∗

K∗(α∗ − 1)
, (38)

below which oscillations (but not relaxation oscillations)
can appear at all values of the noise correlation time.
When a > a1, the influence of the noise is thought to
be a stabilizing factor, because an increase of the noise
amplitude reduces rapidly the interval of the values of the
switching rate ν where oscillations are possible. An impor-
tant observation here is that relaxation oscillations occur
only in the relatively small wedge-shaped area in domain
(2) (the lower border of this region is indicated with the
dashed line in Fig. 7). Other possible oscillations in do-
main (2) correspond to the prey isoclines of the form (2)
and (3) in Figure 2 and will almost cause an extinction of
the predator population or even the whole system (cf. the
comments at the end of Section 3.1. (iv) For K∗ > K∗

c2,
the general view of the phase diagram is similar to Fig-
ure 7, but the “exclusion zone” between the domains (1)
and (2) is absent.
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Fig. 8. The skewness κ and the coefficient of variation η of
the distribution of the prey population sizes vs dimensionless
time t, calculated by means of equations (26)–(30). Solid line:
the function η(t). Dashed line: the skewness function κ(t). The
parameter values are the same as in Figure 4.

In the case of α∗ > α∗
c ≈ 1.108 there are two possi-

bilities. (i) If K∗ < α∗/(α∗ − 1), then the prey isocline
y(u) is a monotonically decreasing function of u for all
values of the noise amplitude and correlation time, i.e.
the system is always in an equilibrium state. (ii) When
K∗ > α∗/(α∗ − 1), the phase diagram in the ν − a2 plane
is qualitatively similar to the case of (iv) at 1 < α∗ < α∗

c .

Finally, we will briefly consider the behavior of the
distribution of prey-subpopulation abundances during the
relaxation cycle period. It is obvious that for a cyclic
regime also the other statistical quantities characterizing
the distribution of prey-subpopulations abundances, such
as variance, skewness, and kurtosis, exhibit relaxation os-
cillations. The time series of the coefficient of variation η
and skewness κ,

η =

√〈(X − 〈X〉)2〉
〈X〉 , κ =

〈(X − 〈X〉)3〉
[〈(X − 〈X〉)2〉]3/2

, (39)

illustrate the fact, that η and κ are relatively large (see
Fig. 8). In other words, subpopulation sizes are distributed
widely and asymmetrically around the mean value. Let us
note that, as a rule, at the region of the minima of the
mean 〈X〉 the probability density P (x, ρ) exhibits a bell-
shaped form, whereas for the region of the maxima P (x, ρ)
exhibits a U-shaped form (see Eq. (24)). Therefore, in the
latter case, there is a high probability that subpopula-
tions with both high and low abundances are found, but
the probability for moderate sizes is relatively small. Thus,
the Gaussian distribution of species abundances, which is
the most popular approximation generally used for the de-
scription of the dynamical properties of stochastic ecosys-
tems [37] and some physical systems [38], is not applicable
here.
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4 Conclusions

We have generalized an (N + 1)-species predator–prey
stochastic model [29] to the case of the Beddington func-
tional response. The behavior of this model is analysed
mainly in the region of the system parameters space,
where the deterministic counterpart of the model is char-
acterized by a globally asymptotically stable nontrivial
equilibrium.

The influence of a fluctuating environment on the car-
rying capacities of prey subpopulations is modeled as a
dichotomous noise. To obtain analytic results we study
the model using a mean field approach in combination
with the assumption that the growth rate of the predator
is much smaller than the growth rates of the preys.

The presence of colored fluctuations of the carrying
capacities of prey populations has a profound effect on
the predator–prey system described by equations (18),
rearranging its parameter space so that in certain re-
gions colored noise can induce quasibistability of the mean
prey-populations density. As a consequence there appear
colored-noise-induced relaxation oscillations of the mean
prey-abundance and predator-abundance, even in the case
of α < b, i.e., if the prey capturing rate α is lower than
the predator interference intensity b. This result that the
fluctuations of the carrying capacities of preys can induce
a stable slow-fast limit cycle at α < b is somewhat sur-
prising because, in the corresponding deterministic model
(noise is absent), the appearance of limit cycles is impos-
sible at any value of the carrying capacity K. The results
indicate that the effect of noise is not merely restricted
to the small shift of the critical capturing rate for Hopf
bifurcations as in the particular case described in [29], but
it will change the whole nature of the dynamics. Notably,
transition from an equilibrium state to a limit cycle is
possible only if the noise amplitude is greater than the
critical value ac (see Fig. 5). For sufficiently large noise
amplitudes, a > ac, an increase of the noise correlation
time can cause oscillations of the mean prey-population
and predator-population sizes. Moreover, the correspond-
ing transitions are found to be reentrant, i.e. at a higher
value of the correlation time oscillations disappear and the
system approaches an equilibrium state.

We examined the phenomenon of colored-noise-
induced oscillations in a particular case (ratio-dependent
functional response) of model (18) already in [29]. How-
ever, in contrast to the present paper, our earlier study [29]
considered only the case where the value of the noise am-
plitude was very small, and hence as a consequence, for
the existence of noise-induced Hopf-bifurcations the prey
capturing rate α must be located very near to the Hopf bi-
furcation point of the corresponding deterministic model,
i.e. the parameter region of the deterministic counterpart
where limit cycles are possible was considered. As was
mentioned in Introduction, such oscillations are very sen-
sitive to small variations of the system parameters and
initial conditions, and therefore their importance in eco-
logical context is doubtful.

Furthermore, noise-induced transitions different from
those considered above can appear. For sufficiently large

values of the saturation parameter c and the noise ampli-
tude a the decrease of the noise correlation time causes
extinction of the predator population (Fig. 6). Note that
in the case of a ratio-dependent model such transitions are
absent.

In conclusion, some, important from the ecological
viewpoint, remarks must be made about the effects of
the crucial parameters b and c on the existence of noise-
induced slow-fast cycles. (i) For b > α, the phenomenon of
noise-induced relaxation oscillations is more pronounced
at moderate values of interference, b ≈ α, and relatively
small values of saturation c < K/K∗

c (see Eq. (32)), e.g. in
the case of ratio-dependence. Note that the phenomenon
appears also at b > α, however the critical noise ampli-
tude ac, below which there are no relaxation oscillations,
increases rapidly as interference increases. (ii) In the case
of sufficiently large values of saturation (prey-dependence
dominates), the oscillatory regime is impossible and the
dynamics of the system converges to an equilibrium. (iii)
When both indicators, interference and saturation, are
sufficiently low, b < α and c < K(α − b)/α, the condi-
tions of validity of the relaxation dynamics are not fulfilled
anymore and apart from relaxation cycles oscillations of
another character appear. In the case of those oscillations
the dynamics can approach very small values of the mean
prey-abundance and extinction of the whole system may
occur in nature due to demographic stochasticity, even if
we have a stable cycle mathematically. Generally, environ-
mental fluctuations prevent such oscillations (extinction),
but the critical noise amplitude above which prevention is
considerable, increases relatively rapidly as the saturation
parameter decreases (cf. Fig. 7 and Eq. (38)).

Our main conclusion is that an interplay of mutual in-
terference between predators and environmental fluctua-
tions can be one of the possible mechanisms for the sponta-
neous generation of a slow-fast oscillatory regime through
predator-prey trophic interaction in predator–prey com-
munities. Under some conditions the model communities
fluctuate in gradually changing regimes, which at times
shift sharply to alternative regimes. Note that no dramatic
extremes in the characteristic parameters of environmen-
tal fluctuations are needed to invoke such switches.

The phenomena are robust enough to survive a mod-
ification of the noise as well as the prey’s self-regulation
mechanism. The noise, for example, can be either a tri-
chotomous noise [39] or a more complicated telegraph pro-
cess, and logistic self-regulation can be replaced with a
generalized Verhulst self-regulation mechanism (cf. [29]).
Although the concrete formulas are different, the general
picture of colored-noise-induced transitions is the same as
that encountered in Section 3.

Finally, we believe that the results discussed here pro-
vide a possible alternative scenario for transitions from an
equilibrium state to a limit cycle (and the opposite way)
observed in nature.
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